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Closed-Form Expressions for Coefficients Used

in FD–TD High-Order Boundary Conditions
Kim McInturff and Peter S. Simon, Member, IEEE

Abstract— Tirkas et al. recently presented an algorithm to

implement absorbing bonndary conditions (ABC’s) of arbitrarily

high order into the finite difference-time domain technique,

However, they dld not provide explicit formulas to determine

the expansion coefficients used in the Pad6 approximations of

the pseudo-differential operator. Instead, the user is required to

determine the roots of a polynomial using numerical methods that

require computational effort and yield only approximate results.
Exact expressions for the desired coefficients that are valid for
Pad6 expansions of any order are presented.

I. INTRODUCTION

T HE finite difference-time domain (FD–TD) method of

electromagnetic analysis is a powerful and versatile tech-

nique which has become very popular in recent years. The

method may be used to model structures with a high degree of

inhomogeneity; also, the computational effort associated with

FD-TD does not grow as rapidly with increasing structure

size as it does for integral equation-based techniques. One

of the difficulties in using FD–TD to analyze antennas and

other structures in unbounded media is the need to terminate

the computational grid. It is desirable to terminate the grid as

close to the structure as possible in order to reduce the size

of the computational domain and thus decrease the time and

memory required to perform the analysis. However, the grid

boundaries must be sufficiently distant from the scatterer so

that the numerically implemented absorbing boundary condi-

tion (ABC) is effective in absorbing outgoing waves without

significant reflection. Thus the quality of the ABC has a direct

impact on the computational efficiency of an l?D-TD code.

Most of the work in the area of improving the ABC has cen-

tered on accurately approximating the one-way wave equation

operator. A comprehensive review of the relevant techniques

can be found in [2]. Empirical numerical studies have shown

that among the class of rational function approximations to

the operator so far examined, Pad6 approximants yield the best

results [1]. Thus it is important to have convenient formulas for

implementing such approximations into the FD–TD formalism.

The authors of [1] presented a systematic method for

implementing rational function ABC’s by extending the ap-

proach of Lindmau [3] to arbitrary order. However, they did

not provide explicit formulas for the Lindman coefficients

corresponding to a Pad6 approximation which are needed

to actually implement the algorithm in a computer program.

ManuscriptreceivedMarch30, 1993.This work wassupportedby Raytheon
CompanylR&D funding.

The authorsare with Raytheon,ElectromagneticSystemsDivision, 6380
Hollister Avenue,Goleta,CA 93117–3197.

IEEE Log Number9210276.

Without such formulas one must solve a system of linear

equations for the standard Pad6 coefficients [4] and then

employ a polynomial root-finding algorithm to determine the

actual Lindman coefficients used in the ABC implementation.

In place of this approximate procedure we offer simple, exact

formulas in Section II and a proof of their correctness in

Section III.

II. LINDMAN EXPANSION COEFFICIENTS

We wish to approximate the two functional ~~ and

l/i~ near s = O by Lindman series of the form

and

KM(S) = 1 + f cms2
~=1 1 – dms2 ‘

respectively. The coefficients am, bm, cm, and d~ are re-

quired to implement high-order Pad6 ABC’s and are uniquely

determined by insisting that the first 4il!l + 1 derivatives at
s = 0 of L~ (s) and KM(s) agree with those of ~~- and

l//~, respectively.

The desired coefficients are given by the simple expressions

1

[

~ + co, (2rn - l)7r

am=2M+l 12M+1 ‘

[
bin=: 1–COS

(2rrl - l)n 12M+1 ‘

cm = am, dm=l–bm,

form =l,..., M.

III. PROOF

We present the proof only for ~~2, since the proof

for l/i~ is quite similar. We have the Maclaurin series

expansion

1

1 – bms2 =2 b~s2n.
n=o

Also,

2 2 (2m - l)T ~m = ~i~2 (2m - l)T .

am=2M+lc0s 4M+2 ‘ 4M+2

1Whefl ~or~ng in rectangular coordinates (as in [1]) onlY the exPansion

for ~ is required. The need for the expansion of 1/ ~ arises, for

example, when solving the wave equation in a cylindrical coordinate system.
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Thus, the first 2M + 1 nonzero terms of the Maclaurin series

expansion of L~ (s) are
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By 1.320.1 of [5], we may write
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However,
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for 1< k < 2M by 1.342.4 of [5], SO
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so
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for 1< n < 2M. Putting (2) in (1) yields

2M (2n – 3)!!s2n
S&f(s)= 1- ~~1 (Zn)!! “

From the Maclaurin series expansion

(2)

we see that the first 4M+ 1 derivatives of /= and LM (s)

are indeed equal.

IV. CONCLUSION

This letter presents closed-form formulas for the coefficients

needed to implement Pad6 ABC’s of arbitrarily high order.

They are useful in constructing FD-TD computer programs of

greater flexibility and accuracy than was previously possible.
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