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Closed-Form Expressions for Coefficients Used
in FD-TD High-Order Boundary Conditions

Kim MclInturff and Peter S. Simon, Member, IEEE

Abstract— Tirkas et al. recently presented an algorithm to
implement absorbing boundary conditions (ABC’s) of arbitrarily
high order into the finite difference-time domain technique.
However, they did not provide explicit formulas to determine
the expansion coefficients used in the Padé approximations of
the pseudo-differential operator. Instead, the user is required to
determine the roots of a polynomial using numerical methods that
require computational effort and yield only approximate results.
Exact expressions for the desired coefficients that are valid for
Padé expansions of any order are presented.

I. INTRODUCTION

HE finite difference-time domain (FD-TD) method of
electromagnetic analysis is a powerful and versatile tech-
nique which has become very popular in recent years. The
method may be used to model structures with a high degree of
inhomogeneity; also, the computational effort associated with
FD-TD does not grow as rapidly with increasing structure
size as it does for integral equation-based techniques. One
of the difficulties in using FD-TD to analyze antennas and
other structures in unbounded media is the need to terminate
the computational grid. It is desirable to terminate the grid as
close to the structure as possible in order to reduce the size
of the computational domain and thus decrease the time and
memory required to perform the analysis. However, the grid
boundaries must be sufficiently distant from the scatterer so
that the numerically implemented absorbing boundary condi-
tion (ABC) is effective in absorbing outgoing waves without
significant reflection. Thus the quality of the ABC has a direct
impact on the computational efficiency of an FD-TD code.
Most of the work in the area of improving the ABC has cen-
tered on accurately approximating the one-way wave equation
operator. A comprehensive review of the relevant techniques
can be found in [2]. Empirical numerical studies have shown
that among the class of rational function approximations to
the operator so far examined, Padé approximants yield the best
resuits [1]. Thus it is important to have convenient formulas for
implementing such approximations into the FD-TD formalism.
The authors of [1] presented a systematic method for
implementing rational function ABC’s by extending the ap-
proach of Lindman [3] to arbitrary order. However, they did
not provide explicit formulas for the Lindman coefficients
corresponding to a Padé approximation which are needed
to actually implement the algorithm in a computer program.
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Without such formulas one must solve a system of linear
equations for the standard Padé coefficients [4] and then
employ a polynomial root-finding algorithm to determine the
actual Lindman coefficients used in the ABC implementation.
In place of this approximate procedure we offer simple, exact
formulas in Section II and a proof of their correctness in
Section IIL

II. LINDMAN EXPANSION COEFFICIENTS

We wish to approximate the two functions' /1 — s2 and
1/4/1 — s2 near s = 0 by Lindman series of the form
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respectively. The coefficients @, by, €m, and d,, are re-
quired to implement high-order Padé ABC’s and are uniquely
determined by insisting that the first 4M + 1 derivatives at
s =0of Ly (s) and Kjp(s) agree with those of v/1 — s? and
1/+/1 — 82, respectively.

The desired coefficients are given by the simple expressions
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ITII. PROOF

We present the proof only for v/1 — s2, since the proof
for 1/y/1 — s? is quite similar. We have the Maclaurin series
expansion
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When working in rectangular coordinates (as in [1]) only the expansion
for /1 — 52 is required. The need for the expansion of 1/+/1 — s? arises, for
example, when solving the wave equation in a cylindrical coordinate system.
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Thus, the first 2M + 1 nonzero terms of the Maclaurin series
expansion of Lys(s) are
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By 1.320.1 of [5], we may write
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for 1 < n < 2M. Putting (2) in (1) yields
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From the Maclaurin series expansion
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we see that the first 4M +1 derivatives of /1 — s? and Ly (s)
are indeed equal.

IV. CONCLUSION

This letter presents closed-form formulas for the coefficients
needed to implement Padé ABC’s of arbitrarily high order.
They are useful in constructing FD-TD computer programs of
greater flexibility and accuracy than was previously possible.
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